

Physiological phenotyping to identify predictive markers and breeding targets

Kristian Thorup-Kristensen & Thomas Roitsch

- Integration of physiological phenotyping into plant phenomics to assess the G x E x M interaction & close the genotype – phenotype knowledge gap
- 2. Central role of resource allocation for growth and stress responses
- 3. Physiological fingerprinting of carbohydrate metabolism via the determination of enzyme activity signatures
- 4. Preliminary results from the Robusta project

Department for Plant and Environmental Sciences Copenhagen Plant Science Center Molecular Plant Physiology and Plant Phenomics

1. Plant phenomics - G x E x M - genotype/phenotype gap

Phenotypic variation...

... is produced through a complex web of interactions between

Genotypes x Environment x Management

...to ensure developmental programms and appropriate responses within variable external conditions

Plant phenomics

Advances through high-troughput molecular breeding and non-invasive phenotyping methods

Plant Physiology – Key Interface between genome and quantitative traits that determines harvest yield and quality

2. Central role of carbohydrate metabolism and resource allocation for growth & abiotic and biotic stress responses

Development & stress responses are linked to plant carbohydrate metabolism

Extracellular Invertase: key metabolic & stress response enzyme

Roitsch et al. (1995) PlantPhys 108: 285 Roitsch et al. (2004) TIPS 9, 607 Albacete et al. (2011) Phyton 50,181 Co-ordinated regulation of source-sink relations & stress responses

Roitsch (1999) COPS 2, 98 Berger et al. (2007) JXB 58, 4019 Albacete et al. (2011) Phyton 50,181

Extracellular invertase is essential for pollen development and reproductive stress resilience

Antisense-Repression of Extracellular Invertase Nin88 results in an Arrest of Pollen Development and male sterile Plants

SEM (2700x) TEM (5600x)

Wildtype

NT23-17

NT23-59

Goetz et al. (2001) PNAS US Patent

Ectopic expression of extracellular invertase results in extreme drought stress tolerance

CIN1 1-91

Albacete et al. (2014a/b) JXB 65, 6081 & 66: 863

Drought stress tolerance in CIN1 is not accomanied by a yield penalty under control conditions

3. Physiological phenotyping of central carbon metabolism

Carbohydrate enzyme activity signature

The enzyme activity signature covers key pathways of primary carbohydrate metabolism

Determination of complex enzyme activity signatures from one single extraction

Uniform extraction:

- small sample size
- direct comparison

96-well format and3 plate readers:

- semi-high throughput
- 300 assays/day vs 30 in single cuvets

Jammer et al. (2015) JXB 66: 5531-5542

Examples of the identification of distinct enzyme activity signatures

Sugar beet: Negative correlation of biomass & sugar yield

- Distinct change of the enzyme activity signature during the transition from normal root to tap root development
- Identification of a metabolic switch between the main pathway of sucrose cleavage

Ryegrass: Determinants of the high sugar (fructan) trait

- Posttranscriptional, metabolic channelling into two pathways competing for the substrate sucrose in the vacuole
- > Identification of a rate limiting glycolytic enzyme

Rapeseed: Nitrogen remobilisation during senescence

Distinct enzyme activity signature of developmental and nitrogen starvation induced leaf senescence

Rapeseed: Impact of elevated CO₂

Distinct enzyme activity signature under high CO₂

Wheat: impact of elevated CO₂

Distinct enzyme activity signature under high CO₂

Barley: Reproductive heat stress tolerance

Distinct impact of heat stress on the enzyme activity signature

4. Analyses of Robusta samples

4.1 Status sample analyses for 2/4 replicates

7 cultivars, 4 replicates at 5 locations

	Week 24 - flag leaf	Week 28 – flag leaf	Week 28 - grain	
Taastrup				
N1 (100kg/ha)				
Taastrup				
N2 (140kg/ha)				
Ringsted				
N2			_	
Odense				Will not be analysed
N2			-	,
Esbjerg				Analyses not yet started
N2				Accousin nuonuose (2/4
Holstebro				Assays in progress (2/4 reps, 13 enzymes)
N2				Data analyses (2/4 reps, 13 enzymes)
				Finished (2/4 reps, 13 enzymes)

4.2 Preliminary results: selected examples

- > 7 cultivars, Taastrup, flag leaf
- Example: Enzyme "Aldolase"

Aldolase, and also other of the 13 tested enzymes, activity show:

- > (1) Large genotype specific differences
- > (2) Nitrogen regime specific differences
- > (3) Sampling time specific differences
- Different profile compared to some other enzymes
- > Tissue specific differences (flag leaf vs. grain)?

1: Tocada

Preliminary yield data

- ✓ Results represent some of the variation in NUE
- ✓ For %N the ranking was surprisingly constant among locations, Simba always highest, RGT Planet always lowest

In progress:

Yield data from Taastrup (2 N regimes), biomass and N at flowering and biomass, N in straw and grain shortly before harvest

	DM (hkg/ha)	N yield (kg N/ha)	%N in grain
Tocada	45.1	83.8	1.87
Laurikka	49.4	90.5	1.85
Evergreen	49.7	89.5	1.81
RGT Planet	51.4	91.3	1.79
Invictus	49.2	89.0	1.82
Flair	48.7	89.7	1.86
Simba	46.5	91.3	1.98

Very preliminary (!) comparison of 2/3 Taastrup sample sets: enzyme activity vs. %N in grain

Simba, best in %N/grain (1,98%): among top 2 for 8/12 enzymes

RGT Planet, worst in %N/grain (1,79%): among last 2 for 7/12 enzymes

Carbohydrate enzyme activity signature

Further physiological analyses:

- Complete analyses for carbohydrate enzymes
- Establish and carry out measurements for nitrogen metabolism enzymes: glutamine synthase & nitrate reductase
- Eventually include also the determination of antioxidant enzyme activities as stress markers

