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1. Plant phenomics - G x E X M - genotype/phenotype gap

Phenotypic variation...

... Is produced through a
complex web of interactions between

Genotypes x Environment x Management

...to ensure developmental programms
and appropriate responses within
variable external conditions

] X L
= E :
ﬁ 1 ] X L
RESPONSE — RESPONSE

\

Common response




UNIVERSITY OF COPENHAGEN

Plant phenomics

Definition Phenomics:
"The study of how the genetic
makeup of an organism
determines its appearance,
function and performance”
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Advances through high-troughput molecular
breeding and non-invasive phenotyping methods
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Plant Physiology — Key Interface between genome and
guantitative traits that determines harvest yield and quality
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2. Central role of carbohydrate metabolism and resource
allocation for growth & abiotic and biotic stress responses
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Development & stress responses are linked
to plant carbohydrate metabolism

Extracellular Invertase: Co-ordinated regulation
key metabolic & stress response of source-sink relations
enzyme & stress responses
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Extracellular invertase is essential for pollen

development and reproductive stress resilience

Antisense-Repression of Extracellular Invertase Nin88
results in an Arrest of Pollen Development and male sterile Plants
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Ectopic expression of extracellular invertase results
in extreme drought stress tolerance

Drought stress tolerance in
CIN1 is not accomanied by a
yield penalty under control
conditions
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3. Physiological phenotyping of central
carbon metabolism
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Carbohydrate enzyme activity signature

CYTOSOL
Cell wall

cwinvertase Sucrose

vaclnvertase
cytinverta Sucrose
synthase
Fructos

Amylopectin

+ UDPglucose
ucose UDPglucose
pyrophosphorylase ADPglucose
v ADPglucose
glucose-1-phosphate pyrophosphorylase

glucose-1-phosphate

fructokinase
hexokinase

phosphoglucomufase
glucose-6-phosphat

\ phosphoglucoisomerase

phosphofructokinase v
-fructose-6-phosphate

fructose-1,6-bisphosphate

glucose-6-phosphate dehydrogenase

aldolase \.

dihydroxyacetone phosphate+ 1
glycerifdéhyde-3-phosphate 6-phospho-gluconate




UNIVERSITY OF COPENHAGEN

The enzyme activity signature covers key pathways
of primary carbohydrate metabolism
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Determination of complex enzyme activity
signatures from one single extraction

4 .
| harvesting + freezing in liquid N, I binds phenolics (amount needed depends
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Examples of the identification of

distinct enzyme activity signhatures

Sugar beet: Negative correlation of biomass & sugar yield

» Distinct change of the enzyme activity signature during the
transition from normal root to tap root development

> Identification of a metabolic switch between the main pathway
of sucrose cleavage

Ryegrass: Determinants of the high sugar (fructan) trait

» Posttranscriptional, metabolic channelling into two pathways
competing for the substrate sucrose in the vacuole

> Identification of a rate limiting glycolytic enzyme

Rapeseed: Nitrogen remobilisation during senescence

> Distinct enzyme activity signature of developmental and
nitrogen starvation induced leaf senescence

Rapeseed: Impact of elevated CO,

» Distinct enzyme activity signature under high CO,

Wheat: impact of elevated CO,

» Distinct enzyme activity signature under high CO,

Barley: Reproductive heat stress tolerance

» Distinct impact of heat stress on the enzyme activity 5|gnatL.e
®




4. Analyses of Robusta samples

4.1 Status sample analyses for 2/4 replicates

= 7 cultivars, 4 replicates at 5 locations

Week 24 - Week 28 - Week 28 -
flag leaf flag leaf grain

Taastrup

N1 (100kg/ha)
Taastrup

N2 (140kg/ha)
Ringsted

N2

Odense

N2

Esbjerg Analyses not yet started
N2
Holstebro
N2

Will not be analysed

Assays in progress (2/4
reps, 13 enzymes)

Data analyses (2/4 reps,
13 enzymes)

Finished (2/4 reps, 13
enzymes)




4.2 Preliminary results: selected examples

» 7 cultivars, Taastrup, flag leaf
» Example: Enzyme “Aldolase”
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Aldolase, and also other of the 13 tested enzymes, activity show:

» (1) Large genotype specific differences
» (2) Nitrogen regime specific differences
» (3) Sampling time specific differences
» Different profile compared to some other enzymes
» Tissue specific differences (flag leaf vs. grain)?
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Preliminary yield data

v' Results represent some of the variation in NUE
v" For %N the ranking was surprisingly constant among
locations, Simba always highest , RGT Planet always lowest

In progress:
Yield data from Taastrup (2 N regimes), biomass and N at
flowering and biomass, N in straw and grain shortly before harvest

DM (hkg/ha) N yield (kg %N in grain
N/ha)

Tocada 45.1 83.8 1.87
Laurikka 494 90.5 1.85
Evergreen 49.7 89.5 1.81

RGT Planet 51.4 91.3 1.79
Invictus 49.2 89.0 1.82

Flair 48.7 89.7 1.86
Simba 46.5 91.3 1.98
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Carbohydrate enzyme activity signature
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Further physiological analyses:

» Complete analyses for carbohydrate
enzymes

» Establish and carry out measurements for
nitrogen metabolism enzymes:

glutamine synthase & nitrate reductase

» Eventually include also the determination of
antioxidant enzyme activities as stress
markers
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